Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean

نویسندگان

  • Lisa N.S. Shama
  • Felix C. Mark
  • Anneli Strobel
  • Ana Lokmer
  • Uwe John
  • K. Mathias Wegner
چکیده

Transgenerational effects can buffer populations against environmental change, yet little is known about underlying mechanisms, their persistence or the influence of environmental cue timing. We investigated mitochondrial respiratory capacity (MRC) and gene expression of marine sticklebacks that experienced acute or developmental acclimation to simulated ocean warming (21°C) across three generations. Previous work showed that acute acclimation of grandmothers to 21°C led to lower (optimized) offspring MRCs. Here, developmental acclimation of mothers to 21°C led to higher, but more efficient offspring MRCs. Offspring with a 21°C × 17°C grandmother-mother environment mismatch showed metabolic compensation: their MRCs were as low as offspring with a 17°C thermal history across generations. Transcriptional analyses showed primarily maternal but also grandmaternal environment effects: genes involved in metabolism and mitochondrial protein biosynthesis were differentially expressed when mothers developed at 21°C, whereas 21°C grandmothers influenced genes involved in hemostasis and apoptosis. Genes involved in mitochondrial respiration all showed higher expression when mothers developed at 21° and lower expression in the 21°C × 17°C group, matching the phenotypic pattern for MRCs. Our study links transcriptomics to physiology under climate change, and demonstrates that mechanisms underlying transgenerational effects persist across multiple generations with specific outcomes depending on acclimation type and environmental mismatch between generations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations.

Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sti...

متن کامل

Transgenerational plasticity in marine sticklebacks: maternal effects mediate impacts of a warming ocean

maternal effects mediate impacts of a warming ocean Lisa N. S. Shama*, Anneli Strobel, Felix C. Mark and K. Mathias Wegner Coastal Ecology Section, Alfred-Wegener-Institut Helmholtz-Zentrum f€ ur Polarund Meeresforschung, Wadden Sea Station Sylt, Wadden Hafenstrasse 43, 25992 List, Germany; and Integrative Ecophysiology Section, Alfred-WegenerInstitut Helmholtz-Zentrum f€ ur Polarund Meeresfors...

متن کامل

Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks.

Bet hedging at reproduction is expected to evolve when mothers are exposed to unpredictable cues for future environmental conditions, whereas transgenerational plasticity (TGP) should be favoured when cues reliably predict the environment offspring will experience. Since climate predictions forecast an increase in both temperature and climate variability, both TGP and bet hedging are likely to ...

متن کامل

Transgenerational acclimation of fishes to climate change and ocean acidification

There is growing concern about the impacts of climate change and ocean acidification on marine organisms and ecosystems, yet the potential for acclimation and adaptation to these threats is poorly understood. Whereas many short-term experiments report negative biological effects of ocean warming and acidification, new studies show that some marine species have the capacity to acclimate to warme...

متن کامل

Temperature and CO(2) additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus.

Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016